

NPS-CS-08-004

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited

 Prepared for: PEO C4I & Space, PMW 180
 4301 Pacific Highway
 San Diego, CA 92110-3217

Forensic Capabilities For Service-Oriented
Architectures

By

J. B. Michael, M. Shing, and D. Wijesekera

February 25, 2008

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Provost

This report was prepared for and funded by the PEO C4I & Space, PMW 180,
Intelligence, Surveillance and Reconnaissance and Information Operations (ISR/IO).

Reproduction of all or part of this report is authorized.

This report was prepared by:

James Bret Michael
Professor of Computer Science and Electrical and Computer Engineering
Naval Postgraduate School

Reviewed by: Released by:

________________________ _______________________
Peter J. Denning, Chairman Dan C. Boger
Department of Computer Science Interim Associate Provost and
 Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
February 25, 2008

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE: Title (Mix case letters)
Forensic Capabilities For Service-Oriented Architectures

6. AUTHOR(S)
J. B. Michael, M. Shing, and D. Wijesekera

5. FUNDING NUMBERS

N6600107WR00222

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER NPS-CS-08-004

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
PEO C4I & Space, PMW 180, 4301 Pacific Highway, San Diego, CA 92110-
3217

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This report describes a framework to provide on-line forensic capabilities to service oriented architecture via Forensic
Web Services (FWS) and runtime execution monitoring. The FWS is a new type of web services to be used by other
web services (of an independent agency) to securely maintain transactional records of interest between other web
services. The framework uses runtime execution monitoring to search the transactional log for interesting (or
suspicious) service invocation sequences to recreate non-repudiable evidence of transactional history for use in a court
of law.

15. NUMBER OF
PAGES

23

14. SUBJECT TERMS
Service oriented architecture, forensic web services, runtime execution monitoring

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

1. Introduction

Large systems-of-systems (SoSes) are typically made up of a federation of

existing systems and developing systems interacting with each other over a network to
provide an enhanced capability greater than that of any of the individual systems within
the system-of-systems. Service-oriented architecture (SOA) and the supporting Web
Services (WS) technology hold promise to create SoSes that are interoperable,
composable, extensible, and dynamically reconfigurable. The DOD has mandated the
basic WS framework standards to be used in the development of its services for use in the
Global Information Grid (GIG) and Network Centric Enterprise Services (NCES)
programs. Service-level compositional techniques such as choreography, orchestration,
dynamic invocation, and brokering, are used to create complex dependencies between
web services belonging to different organizations. These services, however, can be
exploited by rogue users when the services have localized or compositional flaws.
Investigating incidents of misuse of web services requires that dependencies between
service invocations be retained in a neutral and secure manner so that the alleged activity
can be recreated in an undeniable way while preserving evidence that could lead to and
support appropriate prosecutorial activity. Material evidence currently extractable from
web servers such as log records and XML firewall alerts from end-point services do not
have forensic value because defendants can rightfully claim that they did not send that
message and that the plaintiff fabricated or altered the log record to deceive the court. In
order to facilitate and base such investigations on reliable infrastructure that can convince
judicial systems, Wijesekera et al. propose designing Forensic Web Services (FWS) that
preserve appropriate evidence to recreate the composed web service invocations
independent of the parties with a vested interest in the transactional messages [1].

This report describes a framework to provide on-line forensic capabilities to
service oriented architecture via FWS and runtime execution monitoring. Section 2 lists
the requirements of FWS. Section 3 summarizes the FWS proposed by Wijesekera et al.
Section 4 describes the use of runtime execution monitoring to examine the transactional
evidence for complex transaction scenarios involving multiple web services.

2. Forensic Web Services Requirements

In this report, we address three high-level requirements for forensic web services.

(1) Trusted third party over a secure and reliable environment

It is essential that the forensic data are collected and processed by an independent,
trusted third party. We can build upon the extensive research on Trusted Third Party
(TTP) protocols to establish non-repudiation of the data collected by the FWSes.
Moreover, the FWSes should run over a secure network layer that provides:

(a) authentication of all parties involved,

(b) confidentiality and integrity of the communication channels, and

 2

(c) reliable messaging over the communication channels.

(2) Pair-wise evidence logging with time stamping

The essential task of the FWS is to collect evidence of transactions that occur
between pairs of requester WS and server WS at the time of invoking the service. All
transactional evidence collected by the FWS must be time-stamped to include:

(a) service request time – when the requester sends a message to the server
according to the requester’s clock,

(b) service response time – when the server sends the reply to the requester
according to the server’s clock,

(c) service request time-out – when the FWS sends the requester an attestation to
the server’s failure to respond to the service request within the time allowed
according to the FWS’s clock,

(d) server availability time – when the FWS sends the server an attestation to the
server’s availability according to the FWS’s clock.

(3) Comprehensive evidence generation

On demand, the FWS will, in collaboration with other FWSes, compose
transactional history of complex transaction scenarios involving multiple web services
that occurred during specific periods and met specific transactional patterns.

3. The Forensic Web Services Framework

The FWS framework is made up of a set of collaborating FWSes, as illustrated in
Figure 1. To access the services of a registered FWS system, a web service queries the
FWS registry and then uses the location information to register with the FWS. Any client
requesting services of a web service must re-route its transactional messages through its
FWS agent (called the operator FWS), which acts as a Trusted Third Party (TTP) that
monitors the service requests (and corresponding responses) involving its client. For
example, the web services WS-A, WS-B and WS-C have selected, respectively, FWS-1,
FWS-2 and FWS-3 as their operator FWS in Figure 1. The following are necessary for
FWS systems to function as required:

(1) There should be a message format for communicating WS-Forensics layer messages
and storing them in the FWS servers.

(2) All web services must re-route their transactional messages through FWS servers.

(3) The WS call stack must be enhanced with a WS-Forensics layer. (See Section 3.4 for
details.)

(4) The underlying system must provide a trust base and cryptographic services.

 3

FWS-1

FWS-2

FWS-Registry
and other
services

WS-A WS-B

WS-C

The FWS System

FWS registration Service request

Comprehensive evidence generation

FWS-2

Service response

Figure 1. The FWS Framework

3.1 Format for the WS-Forensics Messages

WS-Forensics uses the message format of <#session|#message|#ds:SignatureK(
#session|#message/sequence|#message/envelope)> to exchange between sending WS, FWS
and receiving WS. Here the session element identifies a WS-Forensics conversation, and
message corresponds to an element carrying the actual upper layer message along with its
sequence number (message/sequence) in the conversation. For instance, sequence number
2 corresponds to a response message if message exchange pattern type (MEPType) is
two-way and the protocol is the Simple Evidence Layer Protocol (SELP) [2]. At each
endpoint, either the sender or the receiver signs the session, message/sequence, and
message/envelope parts of the message in the ds:Signature element of the message.
Listing 1 shows a sample message instance transmitted in this format.
…
<soap:Body>
<p1:fwsMessage ...>
 <p1:session id="session" protocol="#SELP" >
 <p1:sessionID algorithm="URI">
 <p1:id>uuid:212131313131232323222</p1:id>
 </p1:sessionID>
 <p1:MEPType>Two-Way</p1:MEPType>
 <p1:agreement>
 <p1:agreementID algorithm="URI">

 4

 <p1:id>www.contracts.com/#231322323123132132</p1:id>
 </p1:agreementID>
 </p1:agreement>
 <p1:partners>
 <p1:sender> //www.portalservices.com
 <p1:fwsttp> //fws-2.forensicwebservice.com
 <p1:receiver> //www.weatherservices.com
 </p1:partners>
 </p1:session>
 <p1:message >
 <p1:timestamp>2002-10-10T12:00:00-05:00</p1:timestamp>
 <p1:sequence id="sequence">1 </p1:sequence>
 <p1:envelope id="envelope">$EnvelopeFromUpperLayer$</p1:envelope>
 </p1:message>
 <p2:Signature>
 <p2:SignedInfo>
 <p2:Reference URI="#session" >
 <p2:Reference URI="#sequence" >
 <p2:Reference URI="#envelope" >
 </p2:SignedInfo>
 <p2:SignatureValue>
 <p2:KeyInfo>
 </p2:Signature>
</p1:fwsMessage>
</soap:Body>

Listing 1: A Sample FWSMessage [1]

3.2 WS-Forensics Messages Recording

WS-Forensics FWS stores the messages in two formats, LogRecordIndex (LRI)
and LogRecord (LR), as shown in Listing 2. A LRI refers to the record of a single
fwsMessage within a WS-Forensics conversation. LR stores entire WS-Forensics
sessions including all fwsMessages delivered to and/or generated by the FWS. LRI
records are used for two purposes: (1) for quick searches and (2) for keeping track of the
location of the entire LR. Each LRI is stored at both FWSes (operator and non-operator
FWS). LR, on the other hand, is stored only at the operator FWS and can be reached
using the LRIs that refer to it.

A FWS storing a LRI sets the value of its status field to that of the
message/sequence part of the fwsMessage. The FWS also sets the timestamp with the
value of message/timestamp part of the fwsMessage and the recordinfo with the value of
session part of the fwsMessage. The envelope and ds:signature parts are not represented
in LRIs but in LRs. LR contains the recordIndex part that has the final timestamp and
status values of the conversation to timestamp and sequence values of the last
fwsMessage in the conversation, respectively.

 5

<p1:logRecordIndex ..>
 <p1:timestamp>05:00</p1:timestamp>
 <p1:status>1</p1:status>
 <p1:recordInfo protocol="URI"..>
 <p1:sessionID algorithm="URI"/>
 <p1:MEPType>string</p1:MEPType>
 <p1:agreement/>
 <p1:partners>
 <p1:sender/>
 <p1:fwsttp/>
 <p1:receiver/>
 </p1:partners>
 </p1:recordInfo>
</p1:logRecordIndex>

<p1:logRecordIndex ..>
 <p1:timestamp>05:01</p1:timestamp>
 <p1:status>2</p1:status>
 <p1:recordInfo protocol="URI"/>
</p1:logRecordIndex>

<p1:logRecordIndex ..>
 <p1:timestamp>05:02</p1:timestamp>
 <p1:status>3</p1:status>
 <p1:recordInfo protocol="URI"/>
</p1:logRecordIndex>

<p1:logRecord …>
 <p1:recordIndex>
 <p1:timestamp>05:02</p1:timestamp>
 <p1:status>3</p1:status>
 <p1:recordInfo protocol="URI"..>
 ...
 </p1:recordInfo>
 <p1:recordIndex>
 <p1:fwsMessage>
 <p1:session/>
 <p1:message/>
 <p1:timestamp>05:00</p1:timestamp>
 <p1:sequence>1</p1:sequence>
 <p1:envelope>...</p1:envelope>
 <p1:message>
 <ds:signature/>
 </p1:fwsMessage>
 <p1:fwsMessage>
 <p1:session/>
 <p1:message/>
 <p1:timestamp>05:01</p1:timestamp>
 <p1:sequence>2</p1:sequence>
 <p1:envelope>...</p1:envelope>
 <p1:message>
 <ds:signature/>
 </p1:fwsMessage>
 <p1:fwsMessage>
 <p1:session/>
 <p1:message/>
 <p1:timestamp>05:02</p1:timestamp>
 <p1:sequence>3</p1:sequence>
 <p1:envelope>...</p1:envelope>
 <p1:message>
 <ds:signature/>
 </p1:fwsMessage>
 </p1:logRecord>

LRI for fwsMessage Seq.1

LRI for fwsMessage Seq.2

LRI for fwsMessage Seq.3

Listing 2: Sample LRI and LR records [1]

3.3 WS-Forensics Messages Routing

Routing transactional information through FWS servers requires that all
transactions be reliably intercepted and routed. As stated, FWS servers gather pair-wise
transactional evidence that flow between sender and receiver web services, using the
Simple Evidence Layer Protocol (SELP) [2]. There are four entities involved in the
process: sender, receiver, operator FWS, and non-operator FWS. Operator FWS refers to
a FWS selected by either party to manage the steps listed below (illustrated pictorially in
Figures 2 and 3), and the Non-operator FWS belongs to the other party.

(1) FWS receives MsgSeq.1 (<#session|#message|#ds:SignatureSender-K(#session|“1”|#env)>).

(2) Validates, stores the message, creates an LR and LRI for MsgSeq.1 and notify non-
operator FWS.

(3) MsgSeq.1 is forwarded to the Receiver and starts a timer.

(4) If the response MsgSeq.2 cannot reach the FWS before timing out then MsgSeq.-1
(<#session|#message|#ds:SignatureFWS-K(#session|“-1”|#env)>) is signed by the FWS; it is
stored and sent back to the Sender and an LRI is created and sent to the non-operator
FWS.

 6

If MsgSeq.2 (<#session|#message|#ds:SignatureReceiver-K(#session|“2”|#env)>) arrives on
time and passes the contractual validity test, it is forwarded to the sender and stored in
FWS along with notifying the non-operator FWS with its LRI.

If MsgSeq.2 fails the contractual validity test, then MsgSeq.-2
(<#session|#message|#ds:SignatureFWS-K(#session|“-2”|#env)>) is signed by the FWS; it is
stored and sent back to the Sender and an LRI is created and sent to the non-operator
FWS.

(5) FWS creates, signs and sends MsgSeq.3 (<#session|#message|#ds:SignatureFWS-K

(#session|“3”|#env)>) to the Receiver. It also stores the message in the LR and sends
the LRI to the non-operator FWS.

Figure 2. An Operator FWS managing the SELP protocol [1]

Figure 3. An Operator FWS storing messages [1]

 7

3.4 Enhanced Web-Services Call Stack

The existing WS call stack consists of a three layers: The bottom layer consists of
the SOAP1 messages; the middle layer consists of WS-Secure Conversations; and the top
layer consists of the Web Services Description Language (WSDL) specifications. SOAP
and WSDL are part of the basic WS framework standards. SOAP provides the standard
language for messaging format used by the service and its requestor, while WSDL
provides the standard language for describing the point of contact for a service provider
(a.k.a. the service endpoint or just endpoint), the public interface of an endpoint (i.e., the
way the requestors should communicate with the service provider), and the physical
address of the service.

Wijesekera et al. propose to add a forensic layer in between the middle layer and
the top layer to reroute transactions through the FWS servers (Figure 4), and have a
sender process and a receiver process sitting in front of each web service endpoint
(Figure 5).

Figure 4. The enhanced WS call-stack [1]

Figure 5. FWS-Handler Module Architecture (adapted from [3])

1 SOAP initially stood for Simple Object Access Protocol. When W3C adopted SOAP as a standard,

the acronym was considered misleading and therefore dropped in favor of just SOAP.

 8

The Sender Process FWS-Handler captures the SOAP message from the upper layer and
encapsulates the message in the WS-Forensics message format by adding signatures,
routing the message to the operator FWS and so on, and submitting the result to the WS-
SecureConversation/WS-Trust handlers shown in Figure 4.

The Receiver Process: FWS-Handler handles the WS-Forensics fwsMessage from the
lower layer. After validating the signature according to the WS-Forensics session context
the handler extracts the original SOAP message and either passes it to another handler (if
such handler exists) in the chain or dispatches it to the intended service|portype|operation
entity.

3.5 Security Requirements for Underlying Layer

WS-Forensics is designed to run over a secure layer with following services: (a)

authentication of all parties involved, (b) confidentiality and integrity of the
communication channels, and (c) reliable messaging over the communication channels.

Two properly implemented standards, WS-Trust [4] and WS-SecureConversation
[5], satisfy these requirements. WS-Trust issues, renews and verifies tokens to support
the verification of message confidentiality, integrity, authentication, and so on. WS-
SecureConversation builds secure sessions using XML encryption and signature.

The processes described in Section 3.4 require secure channels between endpoint
web services and FWS nodes. The steps below show how a WS-Forensics message,
fwsMessage, traverses from a sender to a FWS and subsequently to a receiver.

(1) WS-SecureConversation/WS-Trust handler of the sender grabs the fwsMessage. The
handler then builds a secure conversation by means of the Security Context Token
(SCT) obtained from the Security Token Service (STS). FWS nodes also may have
this role. The fwsMessage is encrypted by WS-SecureConversation and then pushed
into the transport layer to be sent to the FWS node through the conversation

(2) WS-SecureConversation/WS-Trust handler of FWS node receives the encrypted
SOAP message, decrypts it, extracts the actual fwsMessage, and pushes the message
into the WS-Forensics layer to be processed as described in the next section.

(3) After processing the fwsMessage, the FWS node pushes the message to its WS-
SecureConversation/WS-Trust handler to build another secure conversation with the
receiver as described in the first step. Then the message is encrypted by the security
handler, to be sent to the receiver through the conversation.

(4) WS-SecureConversation/WS-Trust handler of the receiver receives the encrypted
SOAP message, decrypts it, extracts the actual fwsMessage, and pushes it into the
WS-Forensics layer to be dispatched.

3.6 Pair-wise Evidence

The SELP protocol and FWS event logs retain the evidence to verify the

following claims, mapped to messages in Table 1:

 9

• Evidence of Origin (EOO): attestation of message send-time and origin.
• Evidence of Delivery (EOD): message acceptance by the intended receiver

and the acceptance time.
• Evidence of Failure (EOF): attestation of message not acknowledged by

intended receiver within time allowed.
• Evidence of Availability (EOA): attestation of server’s availability in a

specific time interval.
• Evidence of Agreement Violation (EOV): attestation of contractual violation

by the server.

Evidence Type Signer FWS Implementation
EOO Sender of message MsgSeq.1 and MsgSeq.3
EOD Receiver of message MsgSeq.1 and MsgSeq.2
EOF FWS MsgSeq.-1
EOA FWS MsgSeq.0
EOV FWS MsgSeq.-2

Table 1: Notation for Evidence Types

4. Transactional Evidence Generation

The creation of comprehensive evidence of a misuse scenario requires the
examination of pair-wise transactional evidence stored in multiple FWSes for interesting
sequencing behaviors, which are behaviors that consist of sequences of events, conditions
and constraints on data values, and timing. In its vanilla form, sequencing behavior
specifies sets of legal (or illegal) sequences, such as the following automotive body-logic
requirement:

Once engine is turned off, compartment lights must be on until driver door is
opened.

Sequencing behavior has two types of common constraints:

(1) Timing constraints – describe the timely start and/or termination of successful or
forbidden computations, such as the deadline of a periodic computation or the
maximum response time of an event handler. For example,

The sqrt() function must complete its computation and return an answer within
200 milliseconds from the time it is called.

(2) Time-series constraints – describe the timely execution of a sequence of computations
within a specific duration of time. For example,

Whenever the system load (L) exceeds 75% of the MaxLoad, L must be reduced
back to 50% of the MaxLoad within 1 minute and must remain at or below 60% of
the MaxLoad for at least 10 minutes..

 10

In this section, we describe the use of MSC-Assertions to specify interesting
behavior of event sequences and runtime execution monitoring to both examine and
construct the transactional evidence for complex transaction scenarios involving multiple
web services.

4.1 Expressing Sequencing Behavior as Message Sequence Chart Assertions

MSC Assertions are a formal language extension of UML Message Sequence
Charts (MSCes) superimposed with UML statecharts [6]. They have the look and feel of
UML MSCes and UML statecharts, yet they are formal and executable. For example,
unlike UML MSCes, MSC Assertions provide for distinguishing between events that can
occur and those that must occur. In addition, MSC Assertions are capable of specifying
infinite sets of scenarios.

MSC Assertions are based on Statechart diagrams superimposed on MSC
diagrams and augmented with Java (or C++) conditions and actions. For example, Figure
6 shows the MSC Assertion for a time-bound requirement of a travel agent service:

R1: The travel agent must obtain bids from at least two airlines and two hotels
and return a flight and a hotel matching the customer’s request within 30 seconds
from the time the customer issues his travel request.

The MSC Assertion of Figure 6 looks, for the most part, like a UML MSC, but it
enjoys the following unique features:

(1) An MSC Assertion is written from the standpoint of an observer, and can be used for
runtime monitoring of the target application. Consider for example the message
reqFlight(Flight f) sent from the Travel Agent to Airline #1. While a UML MSC
might consider an interpretation where this event is generated by the Travel Agent,
for an MSC Assertion, it is meant that the MSC Assertion should monitor-for, or
listen-for, this event flowing from Travel Agent to Airline #1. Note that while the
Travel Agent service may send out many requests to different airlines for bids, the
MSC Assertion only needs to observe two of such requests to satisfy the requirement
R1.

(2) An MSC Assertion allows loops and transitions back up the vertical task bar. In
Figure 6 for example, the Travel Agent will return to the Waiting state if the condition
aBidCount ≥ 2 && hBidCount ≥ 2 is false. This feature is in contrast to UML MSCes
where a vertical task bar represents a timeline and where clearly a task cannot move
back in time. An MSC Assertion however, considers a vertical task bar as a
progression of states, like a state diagram drawn vertically. It therefore permits loops.

 11

Bidding

Error
on entry/bSuccess = false;
System.err.println(
 "Assertion failed");

Watching

OK

Waiting

Customer Travel Agent Airline1 Airline2 Hotel
Network 1

Hotel
Network 2

request(Req r) [] /
timer.restart();

reqHotel(Hotel h)
[rightHotel(h)]

reqHotel(Hotel h)
[rightHotel(h)]

bidFlight(Flight f)
[inState(“Waiting”) &&

rightFlight(f)] /
aBidCount ++;

aBidCount >= 2
&& hBidCount

>= 2

[false]
bidFlight(Flight f)

[inState(“Waiting”) &&
rightFlight(f)] /
aBidCount ++;

bidHotel(Hotel h)
[inState(“Waiting”) &&

rightHotel(h)] /
hBidCount ++;bidHotel(Hotel h)

[inState(“Waiting”) &&
rightHotel(h)] /
hBidCount ++;Complete

response(
 Flight f, Hotel h)

reqFlight(Flight f)
[rightFlight(f)]

reqFlight(Flight f)
[rightFlight(f)]

Airline Thread

Hotel Thread

/*Local Variables*/
TRTimeoutSimulatedTime timer =
 TRTimeoutSimulatedTime(30, this);
int aBidCount = 0;
int hBidCount = 0;

/*Local Variables*/
boolean rightFlight(Flight f) {
 if (f.date != req.flight.date) return false;
 if (f.flight != req.flight.flight) return false;
 return true;
}
boolean rightHotel(Hotel h) {
 if (h.date != req.hotel.date) return false;
 return true;
}

[true]

Init Init Init Init

A

B

Init

timeoutFire()

Figure 6. A MSC Assertion for the Travel Agent Service [6]

(3) States and actions. As discussed above and as illustrated in Figure 6, an MSC
Assertion task might contain both implicit and explicit states. The purpose of explicit
states is to specify actions, which are code snippets (written in Java or C++,
depending on the code generator chosen) to be performed, such as aBidCount++ or
rightFlight(Flight h). For example, the Customer will remain in its implicit initial
state until the event request(Req r) is observed leaving the Customer. The Customer
then enters the Watching state. The Customer will remain in Watching state until

 12

either the event response(Flight f, Hotel h) is observed arriving at the OK state, or the
timeout event is detected.

(4) Java/C++ underlying language and code generation. An MSC Assertion is a
diagrammatic representation of a Java or C++ class that implements the requirement
as a monitor. Hence, all variables and functions declared in the local-variables boxes
of Figure 6 are actually properties of this generated class.

(5) Parameterized events. An MSC Assertion event can contain objects as actual
parameters. In Figure 6, the transition annotated with the message bidFlight(Flight f),
from Airline #1 to the Travel Agent, is sent with some Flight object as an argument.
Condition guards range over local properties and event arguments (e.g.,
rightFlight(f)).

(6) An MSC Assertion is an assertion. It uses the same approach described in [6] for
assertion statecharts where it announces a success or failure for every witnessed input
scenario. It does so using the built-in bSuccess property. The boolean bSuccess is true
by default. The developer assigns bSuccess=false as an action wherever s/he wants
the assertion to fail. The JUnit test-case then inspects this property to decide whether
a particular test-run failed.

Figure 6 realized requirement R1 as follows. First note that, in the style of the
UML MSC notation, the assertion contains six tasks, denoted by the six vertical task bars.
Also, the assertion contains local variables timer, aBidCount, and hBidCount, as well as
two Boolean functions rightFlight() and rightHotel() for checking the correctness of the
itinerary. The MSC Assertion monitoring starts as a request(Req r) event is observed
from the Customer task to the Travel Agent task while the Customer task is in its implicit
inital state. The 30 second timer is triggered and the Customer task enters its Watching
state. The Customer will remain in Watching state until either the event response(Flight f,
Hotel h) from the Travel Agent task (while the latter is in its Complete state) or the
timeout event is detected. If the Customer receives the response() message before the
timeout event, it will enter the OK final state. If the Customer task does not receive the
response() message before the timeout event, the timeout event will cause the Customer
task to enter the Error final state; bSuccess will be set to false indicating the violation of
the requirement.

The Travel Agent task will remain in its Init state until it receives the event
request(Req r), then it will transition to the Bidding state. The Bidding state consists of
three concurrent threads, in the style of the UML statechart threads [6]. The Travel Agent
task will remain in the Waiting state until it has received at least two airline bids and two
hotel bids. It will then transition to the Complete state where the MSC Assertion is ready
to observe the event response(Flight f, Hotel h) from the Travel Agent task to the
Customer task. Clearly, the Travel Agent task must ensure that the bids received indeed
satisfy the customer’s request. This constraint is manifested as a condition guard
righFlight(f) or rightHotel(h) on the message transition. (N.B.: MSC Assertion message
transitions have the same event[guard]/action look and feel as UML statechart
transitions.)

 13

Since we are not interested in the detailed temporal behavior of the Airline tasks
and Hotel Network tasks in the requirement R1, we treat these tasks as black boxes. The
MSC Assertion only observes the fact that each of these tasks returns a bid to the Travel
Agent task only after they have received a request for bid from the Travel Agent task as
follows. Each of these four tasks remains in its Init state until it receives the request for
bid message from the Travel Agent task. It then enters its implicit working state. It will
transition from its working state to its implicit terminal state when the MSC Assertion
observes that the task returns a bid to the Travel Agent task.

4.2 Runtime Execution Monitoring

Runtime Execution Monitoring of formal specification assertions (REM) is a class
of methods for tracking the temporal behavior, often in the form of formal specification
assertions, of an underlying application. REM methods range from simple print-statement
logging methods to runtime tracking of complex formal requirements (e.g., written in
temporal logic) for verification purposes. The National Aeronautics and Space
Administration (NASA) used REM for the verification of flight code for the Deep Impact
project [7]. In [8], we showed that the use of runtime monitoring and verification of
temporal assertions, in tandem with rapid prototyping, helps debug the requirements and
identify errors early in the development process. Recently, the Missile Defense Agency
(MDA) adopted REM as the primary verification method for the new ballistic missile
defense battle manager because of REM’s ability to scale as the size and complexity of a
system increase, and its support for temporal assertions that include realtime and time-
series constraints [9].

4.3 Creating Evidence for Scenarios

As stated, the main objective of the FWS Framework is post-mortem
investigations on inter-dependent scenarios containing more than one party in a
comprehensive manner, which can be accomplished using the following process:

(1) Define the boundary of scenario generation by specifying the web services being
investigated (called suspected web services) and the time period of the scenario.

(2) Create a MSC-assertion to describe the sequencing behavior of interest involving the
suspected web services. Add calls to exception-handlers in the Error flowchart box of
the MSC Assertion to collect the event sequence causing the failure whenever the
MSC Assertion fails during execution of the web services.

(3) Use the FWS-Registry to locate the FWS Trust Third Parties holding the LR records
of any pair-wise transactions involving the suspected web services.

(4) Retrieve the pair-wise transaction evidence for the specified time period from the
FWS TTPS.

 14

(5) Re-create the interactions using a discrete event simulator, and use to exercise the
MSC-assertion statecharts as runtime execution monitors to collect evidence leading
to the failure of the assertions [10].

Figure 7. A MSC Assertion for Detecting and Collect Price Fixing Evidence

For example, suppose we suspect that Hotel Networks 1 and 2 are involved in a
price fixing scheme and want to collect evidence of such activities. We can create the

 15

MSC-assertion shown in Figure 7 to detect and record all reqHotel messages between the
two hotel networks from the time when one of the hotel networks received a reqHotel
message from the Travel Agent to the time when the last of the two hotel networks
returned a bid to the Travel Agent. The statechart assertion sets the boolean suspicious to
true if it detects such communication and reports the evidence when the scenario
terminates in either the OK state or the Error state.

5. Conclusion

In this report, we discussed the need to preserve appropriate evidence to recreate

the composed web service invocations independent of the parties with a vested interest in
the invocations. We presented a framework to provide this capability as a web service to
other web services by logging service invocations at the appropriate level of detail, and
the use of MSC Assertions and runtime monitoring to automate the generation of
transactional evidence for complex scenarios. Our next step is to develop the necessary
software to support the framework and validate the proposed framework with a
prototype.

6. References

[1] M. Gunestas, D. Wijesekera and A. Singhal. “Forensic Web Services,” in

Proceedings of the Fourth Annual IFIP WG 11.9 International Conference on
Digital Forensics, Kyoto, Japan, January 2008.

[2] A. Herzberg and I. Yoffe, “The Delivery and Evidences Layer,” Cryptology ePrint
Archive Report 2007/139, 2007.

[3] Apache Axis2 Architecture Guide, The Apache Software Foundation 2006.

[4] WS-Trust V1.0 Working Draft, OASIS Web Services Secure Exchange TC,
http://www.oasisopen.org/committees/download.php/16138/oasis-wssx-ws-trust-
1.0.pdf, 2006.

[5] OASIS, WS-SecureConversation 1.3, 2007.

[6] T.S. Cook, D. Drusinsky and M. Shing, “Specification, Validation and Run-time
Monitoring of SOA Based System-of-Systems Temporal Behaviors,” in
Proceedings of the 2007 IEEE International Conference on System of Systems
Engineering, San Antonio, Texas, April 2007.

[7] D. Drusinsky and G. Watney, “Applying Run-time Monitoring to the Deep-Impact
Fault Protection Engine,” in Proc. 28th NASA Goddard Software Engineering
Workshop, Greenbelt, Md., pp. 127-133, Dec. 2003.

[8] D. Drusinsky and M. Shing, “Verification of Timing Properties in Rapid System
Prototyping,” in Proc. 14th IEEE International Workshop in Rapid Systems
Prototyping, San Diego, Calif., pp. 47-53, June 2003.

 16

[9] D. Caffall, T. Cook, D. Drusinsky, B. Michael, M. Shing and N. Sklavounos,
Formal Specification and Run-time Monitoring within the Ballistic Missile Defense
Project, Tech. Report NPS-CS-05-007, Naval Postgraduate School, Monterey,
Calif., June 2005.

[10] D. Drusinsky and M. Shing, “Verifying Distributed Protocols using MSC-
Assertions, Run-time Monitoring, and Automatic Test Generation,” in Proceedings
of the 18th IEEE/IFIP International Workshop on Rapid Systems Prototyping, Porto
Alegre, Brazil, pp. 82-88, June 2007.

 17

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA

3. Research Office, Code 09
Naval Postgraduate School
Monterey, CA

4. Mr. John J. Shea

PEO C4I & Space, PMW 180
San Diego, CA

5. Dr. Bret Michael

Naval Postgraduate School
Monterey, CA

6. Dr. Duminda Wijesekera

George Mason University
Fairfax, VA

7. Dr. Man-Tak Shing

Naval Postgraduate School
Monterey, CA

8. CDR Kurt Rothenhaus

PEO C4I & Space, PMW 150
San Diego, CA

9. LTC Thomas Cook

Naval Postgraduate School
Monterey, CA

10. Lt. Col. Carl Oros

Naval Postgraduate School
Monterey, CA

